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individual level, we showed that the typical modeling assumption of force-like pairwise interactions is invalid in our swarms, but that more 
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Overview 

The overarching goal of this project was to advance our understanding of 
collective behavior, in both natural and artificial systems, by acquiring highly resolved 
empirical data for swarming insects and then using these data to guide and validate 
models. The first year of the project was primarily devoted to data acquisition and the 
characterization of free swarms. Although we made progress on unraveling the local 
interactions that generate the global collective behavior, doing so proved to be quite 
challenging. Thus, in the second year of the project, we developed exciting new tools for 
driving the swarms with controlled perturbations and measuring the response. These 
novel methods allowed us for the first time to characterize precisely properties of the 
swarm at the group level, thereby providing much stronger constraints for models than 
had previously been available. Our results both provide deeper insight into the physics 
that governs insect swarming and point the way to a number of exciting new directions 
for future study. 

Over the course of this award, the research was carried out by PI Nicholas 
Ouellette and postdoctoral researchers James Puckett (supported by internal Yale funds) 
and Rui Ni. All three have since left Yale; Ouellette is now an Associate Professor of 
Civil and Environmental Engineering at Stanford University, Puckett is now an Assistant 
Professor of Physics at Gettysburg College, and Ni is now an Assistant Professor of 
Mechanical and Nuclear Engineering at Pennsylvania State University. 

Below, we summarize the principle results of the research supported by this grant, 
similar to what was reported earlier in the two Interim Progress Reports filed. 
Scientific Results 

 Broadly, the results of this research are organized along several themes: studies of 
the interactions between individuals, studies of the swarm as a group, and work on 
modeling. Additionally, to enable the analyses discussed below, we collected a database 
of quantitative measurements several hundred swarming events, both free and subject to 
controlled perturbations. In addition to what we have learned so far from studying this 
database, we anticipate that more can be gleaned from it; and additionally, we have begun 
to share this data with other researchers, in an effort to build a strong community of like-
minded researchers to make progress on the challenging questions posed in this field. 

1. Interaction Rules 
 The generally accepted picture of collective animal behavior is that low-
level, local interactions between individuals percolate upscale and lead to the 



macroscopic behavior of the aggregation. Animal aggregations are thus expected 
to be distinct from other distributed systems (particularly engineered systems) that 
are organized around top-down control. Understanding how animals achieve 
robust, stable macroscopic states with only bottom-up self-organization is thus 
one of the holy grails of the field, with the hope that understanding this process in 
animal groups will allow us to exploit it in engineered applications. 

 But as discussed by the PI in an essay published with support from this 
award [Ouellette 2015], determining the interaction rules from empirical 
measurements of real animals is a challenging inverse problem: we must use the 
information about how each animal moved to understand why it moved in the way 
it did. This problem is made yet more difficult to solve if the interaction rules are 
not constant in time—that is, if the individuals have behave in different ways at 
different times. Models can thus be a useful guide in approaching this complex 
problem: if we have an expectation for what we are looking for, we can constrain 
the way we try to solve it. 
  Many different models of collective animal behavior have been proposed, 
but most share several common features. The field is currently dominated by 
models that treat each individual in the group as a point agent that interacts with 
others via social “forces” that take the same form as physical Newtonian forces. 
This kind of model is very appealing, since we have a great deal of intuition about 
how forces behave and how to treat them mathematically. Additionally, it has 
been shown that effective-force-based models can qualitatively reproduce many 
of the morphologies seen in animal groups in nature by tuning the balance of a 
long-range attraction (keeping the group bound together), a short-range repulsion 
(keeping the group from collapsing to a point), and an intermediate-range 
tendency toward alignment (promoting overall ordering of the group) [Couzin et 
al. 2002].  

Since in these models social interactions are treated as forces, their effect 
should be apparent in the acceleration of the individuals, via an assumed form of 
Newton’s second law. We therefore studied the acceleration statistics of the 
midges to look for signatures of social interactions, and to calibrate the strength 
and balance of any effective forces in our swarms [Puckett et al. 2014]. Our 
results, however, were somewhat surprising. We found clear evidence for a very 
short-range (about a wingspan distance) repulsion; however, these repulsive 
events were extremely rare. We also found no evidence for a long-range attraction 
to other insects (see Fig. 1a), even though the swarms remained tightly bound 
together. And, in addition, our results for the real swarms are significantly 
different from simulations of a swarming model (Fig. 1b). Instead, our results 
paint an unexpected picture of the swarm behavior. Insects remain bound to the 
swarm via some kind of effective attraction, though this attraction is not pairwise. 
Inside the swarm, however, the insects behave as nearly free particles, and at the 
mean-field level are very close to particles in an ideal gas. Measurements of the 
mean-free path suggest that the swarms are at the same time tightly confined 
(since the mean-free path is on the order of the swarm size) and dilute (since the 
mean-free path is on the order of the mean inter-insect spacing).  



 
Figure 1. (a) Mean acceleration of one midge in the direction of its nearest neighbor (red), the most empty space 
nearby (blue), given by the nearest Voronoi centroid, and the center of the swarm (green), as a function of 
separation distance. Negative values indicate repulsive interactions, while positive values are attractive. Midges 
show a clear nearest-neighbor repulsion at very short range; these mean-field acceleration statistics, however, do 
not distinguish between the effects of other midges, empty space, or the center of the swarm. (b) The same 
statistics as calculated from a simulation of the swarm model of Couzin et al. 2002. The statistics from the model 
are qualitatively different from those measured in the experiment. Figure taken from Puckett et al. 2014. 

 But just because we could not identify simple, acceleration-level 
interactions does not mean that there are no interactions present in the swarms. 
And indeed, qualitative observations of the swarms did appear to suggest the 
existence of pairwise interactions. These interactions, however, also seem to be 
highly transient, which would explain why they did not have a strong effect on 
simple mean-field averages. 

 
Figure 2. Time-frequency analysis of the relative distance between midge pairs. (A) Time series for a randomly 
chosen pair as well as its continuous wavelet transform (CWT; bottom panel). Nearly all of the power in the 
signal for this non-interacting pair is at low frequencies. (B) Time series and CWT for an interacting pair. In the 
shaded region, the distance oscillates nearly harmonically with significant power only at frequencies higher than 
1 Hz. Figure taken from Puckett et al. 2015. 

 We therefore designed a wavelet-based time-frequency analysis to identify 
such transient interactions, as long as they modified the frequency structure of the 
insect flight trajectories over some non-zero length of time. Using this method, we 
were indeed able to measure and characterize pairwise interactions in our swarms 

0 20 40 60 80 100−800

−600

−400

−200

0

200

400

distance (mm)

Ac
ce

ler
at

ion
 (m

m
/s2 )

rrep = 12 mm

 

 

a

Nearest Neighbour
Voronoi Centroid
Swarm Centre

0 5 10 15 20 25

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

rrep =  2

distance (arb. units)

Ac
ce

ler
at

ion
 (a

rb
. u

nit
s)

 

 

b Nearest Neighbour
Voronoi Centroid
Swarm Centre



[Puckett2015]. As shown in Fig. 2, these interactions took the form of relatively 
high-frequency and nearly harmonic oscillations in the relative distance between 
pairs of midges. And although they were transient, they were not necessarily rare; 
we found that midges spend about 15% of their time, on average, engaged in these 
interactions. We have hypothesized that these interactions serve the function of 
helping the midges to assess the gender of their interaction partner. Midges are 
known to do this by listening to wingbeat sounds, which occur at different 
frequencies for males and females. Our speculation (which remains to be tested) 
is that the midges may be using some kind of lock-in amplification by modulating 
their distance to their interaction partner at a controlled frequency in order to 
isolate its (quiet) wingbeat sounds. 
 In addition to this targeted study looking for a particular type of 
interaction with a specific frequency signature, we also looked more generally for 
evidence of coordination in the swarms by studying the spatial velocity 
correlation functions. We were motivated by recent work on wild insect swarms 
that reported surprisingly long-range correlations [Attanasi et al. 2014a,b]. In 
swarms of midges of similar species to ours, the authors observed correlation 
lengths of nearly 20 cm, more than 4 times the typical distance between nearest 
neighbors. Given this result, they suggested that such correlation is the true 
signature of collective behavior even in an animal group like an insect swarm that 
does not show overall order.  

 
Figure 3. Spatial velocity correlation function measured in our swarms. Blue circles show the raw correlation 
function; red squares show the correlation function after accounting for large-scale rotation and dilation, as 
defined by Attanasi et al. [Attanasi et al. 2014a,b]. 

 When we measured the idnetical statistics in our swarms, however, we 
found a very different result: our correlation lengths were an order of magnitude 
smaller [Ni & Ouellette 2015]. As shown in fig. 1, we measured a correlation 
length of 16 mm, or about two body lengths—and smaller than the typical nearest 
neighbor distance of about 35 mm. Thus, we find barely any correlation in the 
midge velocities. The difference between our results and those of Attanasi et al. 
remain something of a mystery. We believe, however, that the stronger correlation 
they observed may be due to external uncontrolled effects such as air currents or 
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light patterns, since their swarms were measured in the field whereas ours are in a 
controlled laboratory environment. Similar to the phase-locking we describe 
below, external effects can indeed lead to coherent signals in swarms.  

2. Statistics at the Swarm Level 
When the insects in our laboratory colony swarm, the number of 

participating individuals is not fixed or consistent; rather, each swarming event is 
different. Our enclosure does not allow us to reach extremely large swarms (the 
largest we have measured contained about 90 individuals); it does, however allow 
us to explore the small number limit. Using our swarm database, we therefore 
posed a simple but unexplored question: how many insects does it take to make a 
swarm? In other words, when do the statistics of the aggregation cease to depend 
on the number of individual insects present? 

We used trajectory data for swarms containing as many as 60 individuals 
and as few a single insect. Calling a single insect a “swarm” is certainly 
questionable; however, we observed that these single insects executed trajectories 
and maneuvers that were qualitatively indistinguishable from the trajectories of 
individuals in much larger swarms. We then examined various statistics, including 
measures of the spatial structure of the swarms, the insect velocities, and the path 
lengths between large changes in direction, as a function of swarm size. In all 
cases, we found that as soon as the swarms contained about 10 individuals, the 
statistics saturated to a constant value. Statistically, then, our results show that a 
swarm of 10 is indistinguishable from a swarm of 60 or more. We also examined 
the effect of external visual cues on swarms of varying size, and found similar 
results [Puckett & Ouellette 2014].  

These results have wide-ranging implications. From an experimental 
standpoint, they show that our relatively small laboratory experiments provide 
information that is also valid for the much larger swarms that can sometimes be 
observed in the wild. Our results impose a strong constraint on modeling as well, 
requiring that models converge to stable results with only a few individuals: a 
model that requires thousands of agents, for example, cannot accurately describe 
our swarms. And finally, from an engineering standpoint, our results are very 
promising and support the feasibility of using collective animal behavior as a 
design tool, since even a small number of agents can produce useful, stable 
collective behavior. 

But perhaps the most exciting line of research we pursued during this 
award can be broadly categorized as exploring and defining a new kind of swarm 
“thermodynamics.” Traditionally, models of collective motion have been 
validated by studying the group morphology they produce: a model of flocking 
birds, for example, will be judged successful if each agent moves in the same 
direction. As we have shown, however, morphology alone is not a good indicator 
of model correctness [Puckett et al. 2014]: it is simply not sufficient or detailed 
enough information. Many different kinds of models can produce nearly identical 
group morphology, and they cannot all be simultaneously correct. 



 Animal aggregations are often considered to have well defined group-level 
properties and to behave as “super-organisms,” even though they are composed of 
individual, independent animals that do not behave according to simple physical 
laws. Aggregations have thus captured the attention of the community of 
physicists and applied mathematicians working on so-called active materials. 
Following some of their work, we were thus motived to ask a simple question: if 
an insect swarm can be considered to be a kind of “material,” what are its material 
properties? As any materials engineer knows, this question cannot be answered by 
passive observations alone: for example, a cube of jello and a cube of acrylic can 
look similar, even though they have very different properties.  

 To describe a material properly, one needs to know various 
thermodynamic properties, such as state variables, response coefficients, and 
constitutive laws. Measuring such quantities requires true experiments rather than 
simple observations: we need to be able to perturb the system in a known way and 
measure its response. These kind of experiments are quite difficult to do for real 
animal groups, particularly in the wild. Over this past year, however, we have 
developed some ways to do them for our laboratory swarms, and have found 
fascinating results [Ni et al. 2015].  

 
Figure 4. (a) Power spectra of one component of the velocity for an individual midge in a swarm (dashed lines) 
and the center of mass of the swarm (solid lines). Data are shown for the undriven case (black) and for swarms 
excited by the sound of a male midge sinsuoidally modulated at a frequency of 1 Hz and a maximum intensity of 
75 dB (red). (b) Phase-averaged velocities and trajectories of the center of mass for swarms driven at 1 Hz with 
maximum intensities of 0 (i.e., undriven; blue), 63 dB (green), 68 dB (red), and 75 dB (black). The length of each 
arrow shows the instantaneous magnitude of the center-of-mass velocity normalized by the maximum observed 
value for that data set (green: 19 mm/s; red: 35 mm/s; black: 44 mm/s). The sound source lies along the y-axis 
and points in the positive y direction. (c) Probability density functions (PDFs) of the relative phase of the 
component of individual midges' motion at the driving frequency for the same cases as in (b). The driving signal 
is defined to have a phase of 0. Figure taken from Ni et al. 2015. 

 Since midges respond to acoustic signals, our first set of experiments 
involved driving the swarms with sound. We recorded the sound of a flying male 
midge, and played it back to developed swarms via an external speaker. If we 
played the sound at a fixed volume, we saw no response (aside from a transient 
excitation and relaxation when the sound was initiated). But when we modulated 
the sound amplitude sinusoidally in time, we saw a clear signal at the group level: 
as shown in fig. 4, the motion of the center of mass of the swarm changed from 
being random to following well defined, smooth elliptical trajectories, and its 
power spectrum showed a strong peak at the driving frequency. We were able to 
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find evidence that the mechanism for this change was a kind of phase-locking of 
each individual to the external driving signal. 

The response of the center of mass we measured occurred at the same 
frequency as the external sound, and its amplitude increased linearly with the 
sound loudness. We were thus able to apply linear response theory to define a 
frequency-dependent susceptibility. Using a fluctuation-response relation, this 
susceptibility in turn allowed us to measure an effective temperature for the 
swarm, albeit one that was frequency dependent. The implications of the 
particular form of the effective temperature are not yet known; but this is, to our 
knowledge, the first such study in a real animal group, and provides data that can 
be used for a much more stringent test of models than anything that has been 
known previously. 

3. Swarm Modeling 
Since our swarms do not show clear signatures of interactions in the mean-

field acceleration [Puckett et al. 2014a], their dynamics cannot be captured by 
traditional agent-based models that assume a combination of pairwise attraction, 
repulsion, and alignment social forces. And since a number of swarm-level 
statistics are reminiscent of an ideal gas (including a nearly Maxwell-Boltzmann 
speed distribution [Kelley & Ouellette 2013] and an exponential free-path 
distribution [Puckett et al. 2014]), it is tempting to model the swarm to leading 
order as a collection of essentially non-interacting random walkers in some kind 
of confining potential (to keep the swarm cohesive). In such a model, interactions 
would be essentially non-existent, and the insects would be only very weakly 
coupled. 

An alternative, and we believe more biologically reasonable approach, is 
to instead realize that similar macroscopic effects can appear if all the insects are 
in fact strongly coupled, in the sense that each insect feels the effects of all the 
others. Working in collaboration with Prof. Nir Gov at the Weizmann Institute of 
Science in Israel, we have been developing such a model. Unlike earlier 
descriptions of collective motion that are based on high-level assumptions of 
social tendencies, our model is based on the actual sensing capabilities of the 
insects. As stated above, we know that midges are highly sensitive to sound, and 
that the inter-individual interactions are mostly likely acoustic. Over the size of a 
typical swarm, acoustic damping due to air friction is negligible; thus, the sound 
produced by one midge falls off only geometrically. If we model each individual 
as a point emitter, the acoustic intensity will thus decay according to an inverse-
square law—just like a gravitational field. Making the additional ansatz that each 
midge is attracted to its neighbors with a strength that is proportional to the sound 
it detects, we can thus model the swarm as a self-gravitating cluster. The n-body 
gravity problem is well known to admit chaotic solutions, and so the model can 
reproduce complex individual trajectories; and in addition, an overall swarm 
cohesion is a natural consequence of the formulation of the model. 

To make a tighter connection to the midge biology, we introduce one more 
feature to the model: as is often the case with biological sensors, we assume that 



the midges adapt their acoustic sensitivity to the overall sound level. Specifically, 
we assume the common fold-change detection mechanism [Shoval et al. 2010], 
also known as Weber’s law. With this final assumption, the effective force on 
midge i due to midge j can be written as 

𝑭eff! = 𝐶 𝒓!"
!

|𝒓!!𝒓!|!!
!ad
!!

!ad
!!! |𝒓!!𝒓!|!!!

, 

where C is an overall coupling strength, ri is the position of midge i, 𝒓!" is a unit 
vector pointing from midge i to midge j, and Rad is a length scale over which 
adaptivity occurs. Since this force involves a sum over all midges in the 
denominator of the term in parentheses, it is inherently many-body, and cannot be 
decomposed into a sum of pairwise interactions. Thus, the results from the model 
mirror what we observe in the swarms, where the acceleration statistics do not 
show a signature of pairwise interactions. With this model, however, we can 
reproduce more subtle features of the swarm, including the swarm-size scaling of 
the strength of the effective harmonic trap that binds the midges to the swarm 
[Kelley & Ouellette 2013] and the shape of the velocity and acceleration 
distributions. A paper outlining the model and these preliminary results is 
currently in preparation. With these model predictions in hand, we can then look 
for these effects in the actual insect swarms, as a way to benchmark the model 
much more carefully than would be possible from considering, e.g., swarm shape 
alone. 
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